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Data from experiments on the turbulent boundary layer around an axisymmetric vehicle rising under
its own buoyancy are described in detail and analyzed using tools developed in nonlinear dynamics. Ar-
guments are given that in this experiment the size of the wall mounted pressure sensors would make the
data sensitive to the dynamics of about ten or so coherent structures in the turbulent boundary layer.
Analysis of a substantial number of large, well sampled data sets indicates that the (integer) dimension of
the embedding space required to capture the dynamics of the observed flows in the laminar regime is
very large. This is consistent with there being no pressure fluctuations expected here and the signal be-
ing dominated by instrumental “noise.” In a consistency check we find that data from the ambient state
of the vehicle before buoyant rise occurs and data from an accelerometer mounted in the prow are also
consistent with this large dimension. The time scales in those data are also unrelated to fluid dynamic
phenomena. In the transition and turbulent regions of the flow we find the pressure fluctuation time
scales to be consistent with those of the fluid flow (about 250 usec) and determine the dimension required
for embedding the data to be about 7—8 for the transitional region and about 8-9 for the turbulent re-
gime. These results are examined in detail using both global and local false nearest-neighbor methods as
well as mutual information aspects of the data. The results indicate that the pressure fluctuations are
determined in these regimes by the coherent structures in the turbulent boundary layer. Applications
and further investigations suggested by these results are discussed.
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I. INTRODUCTION

Fluid flow over a rapidly moving body creates
Tollmien-Schlichting (TS) waves which develop from the
shear in the boundary layer near the body and grow by
extracting energy from the mean flow into the complex
behavior known generally as boundary layer turbulence.
The turbulent drag on a body moving in this fluid is pri-
marily due to this excitation of vortex motion, and the
subject has properly been of substantial interest for many
years. This paper reports on the analysis of data ob-
served on a flow around an axisymmetric test vehicle
while it rises under its own buoyancy. This configuration
simplifies the flows by making them nearly two dimen-
sional and still exposes flows of significant practical im-
portance. In the study of open flows over flat plates the
turbulent region is marked by coherent structures [1,2]
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which appear partly as horseshoes of localized vorticity
bent from lines of spanwise vortices by the mean flow, at
least in the part of the boundary layer furthest from the
wall, and partly as streamwise vortex structures near the
wall. The appearance of these vortices and coherent
structures even at high-Reynolds number makes it plausi-
ble that only a few degrees of freedom might dominate
the boundary layer flow even far downstream from the
prow of the test vehicle. In the present case, this idea is
well established by the parameters of the flow and the ob-
servations about the coherent structures as summarized
by Cantwell [1] and Robinson [2]. We return to this con-
nection shortly.

The main result of the analysis in this paper is that
methods which identify the nonlinear dynamical degrees
of freedom directly in time domain reveal that in this ex-
periment a small number of degrees of freedom are
sensed by the pressure sensors flush mounted on the body
to view pressure fluctuations in the boundary layer.
While we shall have more to say about the boundary lay-
er fluctuations, the fact that the sensors reveal only a few
degrees of freedom to be active is consistent with having
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the many degrees of freedom not residing in coherent or
larger scale motions significantly damped out in the ob-
served regime of fluid flow. While small scale motions
are present at some amplitude, they are “in the noise”
relative to the observed degrees of freedom, and we
would neither expect to see them nor expect to have them
play any significant role in the dominant dynamics of the
phenomena seen by the sensors. This runs contrary to
the idea that an enormous number of degrees are active
in high-Reynolds-number flows. However, it is to be con-
sidered an aspect of the degrees of freedom that the sen-
sors used in this experiment can actually sense with dis-
tinguishable amplitude. We shall argue that the
mathematical idea that the dimension of the flow is enor-
mous is not contradicted by the fact that real world sen-
sors can be influenced by only a subset of those degrees of
freedom. This idea calls for the introduction of addition-
al grounds for reasoning about the dimension of an ob-
served time series, going beyond the strict guidelines of
the time delay embedding results [3-5] or the direct
determination of dimension or active degrees of freedom
from numerical simulations [6] which contain no con-
sideration of the properties of the sensors involved in the
observations.

A. Description of the experiment

The experiment was conducted in a deep fresh water
lake (Lake Pend Orielle) at a facility operated by the Da-
vid Taylor Research Center/Acoustic Research Detach-
ment in Bayview, Idaho. A buoyant test vehicle was used
for the experiment. The test vehicle was propelled verti-
cally from a depth of 1100 ft near the bottom of the lake
by its own buoyancy. See Fig. 1 for a representation of
the experimental setup. The vehicle was an axisymmetric
body 21 in. in diameter and approximately 27 ft in length.
Included in the body was a weight section which held a
symmetrically distributed array of cylindrical lead
weights. Depending on the weight in this section, vehicle
speeds of 40 to 75 ft/sec (12.2 m/sec to 22.9 m/sec) were
attained. In the experiment analyzed here the speed was
70 ft/sec (22.9 m/sec).

The nose of the test vehicle (see Fig. 2) was instrument-
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ed with piezoelectric pressure transducers arrayed along
the axis of the text body to measure the pressure fluctua-
tions associated with the developing boundary layer and
the resulting turbulence. The transducers were PCB
Model 112M149 having a sensitivity of 50 mV/psi (—26
dB/1 V/psi). The physical diameter of the transducers
was 0.218 in. (0.55 cm), and the effective diameter over
which the instrument was sensitive to the flow, based on
a rolloff of —6 dB, was found to be 0.12 in. (0.30 cm) [7].
The pressure transducers were mounted in a carbon-
graphite nose shell with stainless steel inserts as shown in
Fig. 3. The entire shell surface was covered with an 0.125
in. (0.32 cm) elastomer in order to provide a smooth sur-
face over which the boundary layer could develop. In
this configuration the transducers did not trip the flow by
form drag. In effect, they were flush mounted because of
the elastomer covering.

The vehicle was hauled down to a depth of 1100 ft
(335.5 m) via a cable attached to an onshore winch. Once
the vehicle was stopped at the bottom of the lake, the on-
board Honeywell 5600C tape recorder was powered on
and ambient data from all sensors were recorded for 30
sec. Following the ambient recording, the vehicle
released itself from the cable and ascended under its own
buoyancy towards the lake surface. For a vehicle speed
of 70 ft/sec, steady state conditions were achieved at a
depth of 700 ft (213.5 m). At 160 ft (48.8 m) the vehicle
spread “fins” which turned the vehicle horizontal so the
surface would not be broached and result in damage to
the electronics. The data reported on in this paper were
taken during a 5-sec interval of the steady part of the ex-
perimental run while the vehicle was between 550 and
200 ft below the surface.

The Fourier spectra of pressure fluctuations measured
by transducers in laminar, transitional, and turbulent
flow regimes are shown in Figs. 4-8. The length Rey-
nolds number and displacement thickness & are also
shown in the figures. & was computed using the Transi-
tional Analysis Program System (TAPS) [8]. Because
there are no measurable pressure fluctuations in laminar
flow, the Fourier spectrum in that region consists of
transducer response to the fluid loaded nose vibration
and not to boundary layer pressure fluctuations. This

FIG. 1. The setup of the experiment on the
buoyant test vehicle. The vehicle was
launched at ~300 m depth and rose freely to
about 50 m, where it turned to avoid breaching
the surface. Data were taken every 15.26 usec
for 5 sec while the vehicle was in free flight.
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FIG. 2. Schematic of the nose of the test
vehicle showing the laminar, transition, and
turbulent regions. Below the region designa-
tions is an indication of the physical processes
dominant in that region. The vehicle was ax-
isymmetric, so the designations hold around
the body.

will be clear in all of our later analysis as well, and it is
important to keep this in mind as we proceed below.
Transition and turbulent data are dominated by bound-
ary layer fluctuations up to 3 or 4 kHz. Further discus-
sion of the experimental situation can be found in [9].

The boundary layer is about §=0.5 cm. thick (momen-
tum thickness), ranging from 0.16 to 0.6 cm. through the
region of the pressure sensors. Using a nominal speed of
the vehicle of # =20 m/sec, we deduce a typical turnover
time or inverse shear in the boundary layer of 6 /u =250
psec. The importance of the outer flow variables in the
behavior of the pressure fluctuations seen on the wall in
boundary layer flows is emphasized by the results of Far-
abee and Casarella [10]. Also, the scaling of vorticity
variations, clearly the dominant feature in the boundary
layer coherent structures, is much cleaner when done
with outer variables [11]. The Reynolds number u8/v
based on these dimensions is about 10°. The sampling
time of 7,=15.26 usec chosen for the acquisition of the
data guarantees we will capture the main variations in
the pressure due to fluid motions, and the shear rate of
~4 kHz means we will lose little by the low pass filtering
done at 6400 kHz.
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FIG. 3. Configuration of the pressure sensors.

B. Tools used in analysis of the experiment

We have performed analysis of numerous data sets
from these experiments using 4 to 5 sec of data in each
set. This results in 262 144 points for 4 sec of data and
327 680 points for 5 sec of data. The tools we have used
to examine the data include the familiar examination of
the time traces and the Fourier spectrum of these. We
will show that these tools reveal useful but limited infor-
mation about the dynamics. We have also studied
characteristics of the nonlinear motion [5,12] with:

(i) Average mutual information, which determines the
way in which measurements at time ¢ nonlinearly corre-
late [13] with measurements at time ¢'#t. We will show
that the typical information decorrelation time in the
transition and turbulent regions is about 157, =230 usec.
This is consistent with the fluid dynamical time scales as-
sociated with the inverse shear estimated above.

(ii) Global false nearest neighbors, which determine in
what dimension the attractor in this fluid flow is unfolded
[14] in a coordinate system composed of time lags of the
pressure measurements taken at lags determined by the
average mutual information.

(iii) Local false nearest neighbors, which tell us the di-
mensions of the dynamical model to be used to describe
the data [15].

We began the evaluation of the local and global
Lyapunov exponents for these attractors [5], but even
with the very large data sets we did not convince our-
selves that we have sufficient data for the accurate evalu-
ation of these important quantities. We are continuing
work on these as they dictate the predictability of the
data we are observing. The issue has to do with the eval-
uation of these exponents in dimensions as high as 8-10.
We did conclude that in the transition region where the
dimension is lower at least one exponent is positive, con-
sistent with the idea of low dimensional chaos, and has a
value about (107,) 1. One exponent is always zero which
tells us that the dynamics is governed by a set of
differential equations. We shall return to these important
questions in a subsequent article.
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FIG. 4. Fourier power spectrum of the time
series for sensor B1 located in the laminar
zone of the flow. Spectra are shown for the
ambient pressure when the vehicle was at rest
(this is the heavy solid line designated as
BACKGROUND) and for flow conditions as
described in the text (light solid line).

FIG. 5. Fourier power spectrum of the time
series for sensor B3 located in the laminar
zone of the flow. Spectra are shown for the
ambient pressure when the vehicle was at rest
(this is the heavy solid line designated as
BACKGROUND) and for flow conditions as
described in the text (light solid line).

FIG. 6. Fourier power spectrum of the time
series for sensor B4 located in the transition
zone of the flow. Spectra are shown for the
ambient pressure when the vehicle was at rest
(this is the heavy solid line designated as

BACKGROUND) and for flow conditions as

described in the text (light solid line).
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C. Scales in the experiment

In the Cantwell and Robinson review articles [1,2] we
find the introduction of “wall units” to be an enormously
useful way to capture qualitatively the scales of any given
experiment. These units are defined in terms of the stress
7, at the wall which in turn defines a friction velocity u .,
172

) (1

p

where p is the density of the fluid. From this velocity and
the kinematic viscosity v of the fluid, a length scale,

4

—_—, 2)
uT

is introduced. In the present experiment we establish a

feel for the size of things by using the values for these

quantities at the location of the sensor B7 (location to be

given below), where ambient data as well as pressure fluc-
tuations during buoyant rise of the body was made avail-
able for analysis. Using the value v=1.57X1072
cm?/sec for water and the value u,=72.8 cm/sec de-
duced from the experimental setup and the program TAPS
[8], we find a length scale for wall units of 2.16 X104
cm. In these units the effective sensor size is about 1400
wall units.

The distance between streamwise coherent structures
in the turbulent boundary layer has been observed to be
about 100 wall units. Similarly, the size of a horseshoe or
hairpin structure is around 150 to 200 wall units. With
these estimates we see that on the order of ten coherent
structures would be within the sensitivity area of the sen-
sors used in the experiment. On these grounds, we would
expect that the dynamics of these few coherent structures
should totally dominate the observations here. This is
further supported by the observations of Schewe [16],
who analyzed the ability of pressure sensors on the wall

FIG. 8. Fourier power spectrum of the time

series for sensor B7 located in the turbulent

zone of the flow. Spectra are shown for the

ambient pressure when the vehicle was at rest

(this is the heavy solid line designated as
BACKGROUND) and for flow conditions as

described in the text (light solid line).
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to identify all degrees of freedom in a turbulent boundary
layer flow. He concluded that when the sensor is about
20 wall units or less it picks up the finest details of the
flow, but as one increases the sensor size it becomes sensi-
tive to other aspects of the flow. Schewe studied sensor
sizes from 19 to 333 wall units in diameter. Our sensors
are 70 times bigger than this suggested size of 20 wall
units, and it is quite plausible that they average out pres-
sure fluctuations on the smallest scales and report only
effects due to the larger scale coherent structures of
which we estimate an order of 10 are active in the sensors
range.

Finally, our Fourier spectra for the transition and tur-
bulent regions peak in the vicinity of frequencies given by
27w f8/u,~50 to 70, which is just in the region that Fara-
bee and Casarella [10] identify as the signature of the
maximum effect of outer flow dynamics on the wall pres-
sure fluctuations. Defining the outer scale frequency by
f,'=278/u,, we have f,=~23.2 Hz. The region
f=5f,=~116 Hz is called the low frequency regime in
[10] and identified as coming from large distances from
the wall and contributing less than 1% of the total rms
pressure fluctuations. These frequencies were filtered out
of the present data in any case. The region f=50f, is
called the midfrequency region in [10], and their analysis
quite clearly associates this regime with turbulent activity
in the outer region of the boundary layer. This is con-
sistent with the other scale estimates we have made here.

II. DATA ANALYSIS

We will present the analysis of many data sets from the
experiments just described. The first group are the sta-
tions designated B1, B3, B4, B5, and B7 along one of the
axial lines of sensors arrayed on the buoyant test body.
We also look at data from the sensor at B7 when the test
vehicle was sitting motionless at the lake bottom and at
data from the fore mounted accelerometer during
motion. The ambient data sets a scale and qualitative
description of the “noise” in the system. The accelerom-
eter gives a look at the excitation of the structural modes
of the body, and this will be seen in contrast to the fluid
fluctuations observed by the pressure sensors. The data
sets B1 and B3 are in the “laminar” regime where pres-
sure fluctuations from the fluid motion should be
minimal. Indeed as we emphasized above there should be
no fluid dynamical pressure fluctuations in the laminar
region, so what we see here are either instrumental fluc-
tuations or pressure associated with fluid-loaded vibra-
tions of the hull of the buoyant body. The data set B4 is
in the ‘“‘transition” regime, and the sets B5 and B7 are in
the “turbulent” regime. To assure ourselves that con-
clusions about one region of flow or another are not
specific to the line of “B” sensors, we have also looked at
data sets from stations C2, F3 in the laminar regime, C4,
C5, and E4 in the transition regime, and 48 and 47 in
the turbulent regime. We will not display the complete
analyses for these stations as the results do not further il-
lustrate the points to be made with the B-station data.
Since the results for the transition and turbulent regions
are quite striking, we will present material from the

ABARBANEL, KATZ, GALIB, CEMBROLA, AND FRISON 49

analysis of the sensors at stations C5 and 48. The form-
er is in the transition region and the latter near the end of
the sensor chain in the turbulent region. The behavior of
the pressure fluctuations from these and all the other sta-
tions is entirely consistent with that which is presented
from the B stations in the respective regimes.

Chaos is a phenomenon in multivariate state space. It
may be observed as a scalar time series as we do here in
output voltages from a sensor, but we need to reconstruct
a many dimensional phase space for viewing the chaotic
structure and for computing distinguishing characteris-
tics of the data. The method we use for this is called time
delay state space reconstruction [3-5,12] and consists of
making d-dimensional vectors from the time delays of the
observations. Thus from measured voltages v(n)
=v(ty+n7,) we make vectors

yn)=(w(n),v(n +T)v(n+2T),...,v(n +(d—1T)),
(3)
and the first task is to find 7 and d.

A. Ambient data

We begin with the data set taken at station B7 before
the vehicle was launched. This is the ambient data. In
Fig. 9 we show the time trace of the voltage measured as
the output of the pressure transducer as a function of
time. This is about 10% of the recorded data stream.
The Fourier power spectrum for this data shows a rather
flat spectrum until the roll off at 6400 Hz, due to the low
pass filter.

1. Average mutual information

Next we will display the average mutual information
calculation for the ambient data. At this juncture we will
digress to explain the statistic we are computing so the
reader can understand what we are evaluating.

Nonlinear systems in a parameter regime where the or-
bits are chaotic are known to generate entropy in the
direct sense of Shannon [5]. This suggested to several au-
thors [13] that the information theoretic properties of

t

V() (Volts)

T e000 12000 18000 24000 30000

Time (15.26 microseconds)

FIG. 9. The time trace of voltage from the pressure transduc-
er at location B7 in the ambient state. The vehicle was at rest.
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chaotic systems would be particularly useful in their
study. The average mutual information is one of those
tools. It answers the question: if we have made a mea-
surement of voltage from the pressure sensors
v(n)=v(ty+nr,), how much information (in bits) do we
have about the measurement of voltage (pressure) a time
T, later; namely, v(n +T)? The information theoretic
answer to this question requires the distribution of the
measurements v(n) and v(n +7T) (the distribution of
these is the same) over the set of measured data and the
joint distribution of measurements of these two quanti-
ties. The first we call P(v(n)), the second, P(v(n +T)),
and the last, P(v(n),v(n +T)). The mutual information
between these measurements is

P(v(n),v(n+T))
P(v(n))P(v(n+T))

log, , 4)

and the average over all measurements is

N
I(T)= 3 P (n),v(n+T))
n=1
P(v(n),v(n+T))

X108z | B ()P (n +T))

’ (5)

when we have N observations. I(T) is the average mutu-
al information. If the measurements v(n) and v(n +7T)
are independent, then each term in this sum vanishes
since the joint probability factorizes P(a,b)=P(a)P(b).
We expect the two measurements to become independent
for very large T since chaotic signals rapidly lose memory
of earlier entries on their orbits. I(7 =0) is large. It
reflects the full knowledge we have of the measurements.
The actual value, I(0), is the Shannon entropy. In gen-
eral, I(T)>0, and we seek some intermediate value of T
where I(T) is not too large or too small. If we can find
such a value, then that T will serve as a candidate for
determining rather independent measurements v (n) and
v(n +T)—independent in a nonlinear sense. A non-
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FIG. 10. The average mutual information evaluated from
data taken at station B7 in the ambient state. The first
minimum of I(T) is at T=5 or 76 usec. 327000 data points
were used for this analysis.
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FIG. 11. An expanded scale view of the average mutual in-
formation evaluated from data taken at station B7 in the am-
bient state. - The first minimum of I(T) is at T'=5 or 76 usec.
327000 data points were used for this analysis.

linear prescription, similar in spirit to the prescription
often used in linear analysis of choosing the first zero of
an autocorrelation function, is to choose the first
minimum of I (7). In practice, any time lag in the vicini-
ty of this minimum will do fine, and the mathematical
theorem which underlies this construction [3,4] is true, in
principle, independent of 7.

Evaluating I(T) gives the data shown in Fig. 10. This
function has its first minimum at 7 =5 or at a lag of ap-
proximately 76 usec. The region of this minimum is
shown in expanded format in Fig. 11. From our earlier
comments we would conclude that this delay has little, if
anything, to do with time scales associated with the fluid
flow.

2. False nearest neighbors

To determine an appropriate value for the dimension
of the state space in which we will view the observed pro-
cess, we use a method which inquires into the geometric
basis for the theorem of Mafié and Takens [3,4]. The idea
is that we observe the data from a multivariate structure
projected down onto the observation axis, here, v(n). To
unfold this structure we must add additional coordinates
for the space. We have added enough additional coordi-
nates when all points are near each other for dynamical
reasons rather than because they got there by projection
from a higher dimension. We proceed [14] by determin-
ing in dimension d which points made out of time delays
into vectors as above are the nearest neighbors yNN(n ),

YN =w™Nn), o NN + 1), ..., 0NNn +(d —1)T)) ,
(6)

of the point y(n). Then we ask whether these points
remain near in dimension d + 1, where the vector y(n) is
augmented by a component v (n +dT) and yNN(n) is aug-
mented by v™N(n +dT). If this distance is small, then
the neighbors are true neighbors. If not, then we have
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false neighbors which arrived near each other by projec-
tion. When the percentage of false nearest neighbors falls
to zero, we have unfolded the attractor.

“Noise,” which we have come to understand is high di-
mensional dynamics, will have a large percentage of false
nearest neighbors for any low dimension, say up to 20 or
so where we typically stop computing. Eventually, as the
number of dimensions reaches that of the dynamical rule
generating the “random” numbers, the percentage of
false nearest neighbors will drop to zero. If we add a
high dimensional signal to a low dimensional signal
[5,14], then the false neighbors will fall for a while and
eventually rise. These qualitative statements are depen-
dent on the number of data, but seem to hold as a
descriptive feature of this kind of data.

In Fig. 12 we show the percentage of false nearest
neighbors for the ambient data using the time delay of
T =S5 indicated above and using first 17000 and then
87000 data points. It is clear from this graph that the
ambient data represent a high dimensional signal.
Indeed, from this test, with the computing power we
presently have and the number of data available, we can-
not say in what dimension the data may be unfolded, ex-
cept to agree that it is higher than 20. In Fig. 13 we
show for comparison the false nearest-neighbor computa-
tion for the Lorenz model [17], which is composed of
three ordinary differential equations. The computation is
shown for the clean chaotic signal, the same signal with
50% (S /N =6 dB) uniform random noise added, and the
same signal with 100% (S /N =0 dB) uniform random
noise added.

It is clear from this example that the ambient signal
may be composed of a low dimensional signal plus some
high dimensional noise, but no quantitative test for this
kind of conclusion is yet available. The qualitative sug-
gestion, however, arguing by analogy with the behavior
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FIG. 12. Global false nearest neighbors for the data from sta-
tion B7 when the vehicle was at rest. The time delay of T'=5
used in constructing phase space vectors y(n) is taken from the
first minimum of the average mutual information. Results are
shown for N =17000 and N =87000 data points. The implica-
tion that the ambient data is high dimensional is independent of
the number of data in this range.
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FIG. 13. Global false nearest neighbors for data from one of
the components of the three degree of freedom Lorenz model
[17]. The false nearest neighbors are shown when the data are
clean, when we have added uniform random numbers with an
rms level of 50% of the size of the attractor, and when we have
added noise at 100% the size of the attractor. The false nearest
neighbor calculation degrades gracefully with contamination.
This figure suggests that in some of the data analyzed in this pa-
per we may be seeing a low dimensional system contaminated
by high dimensional “noise.” T =10 was used in these calcula-
tions.

of the Lorenz data contaminated at various levels is both
suggestive and interesting.

The false nearest-neighbor test thus establishes here
that this ambient data is noiselike, and we can proceed no
further with our analysis of this data using the tools
presently available for nonlinear systems. More precise-
ly, when a signal is shown to be high dimensional, the
analysis tools for working further with that signal are ba-
sically not well developed at this time. The distinction
between low and high dimensional is not one made in
principle but in practice and the qualitative break point is
about dimension 8 to 10. In any case, we will see quite a
different behavior for transition and laminar data. We
have presented this in detail since when we come to other
test vehicle data sets, the contrast will be striking.

B. Laminar data

Next we examine data, from the laminar region. The
time series of voltage from station B1 is shown in Fig. 14.
It is irregular, appearing much as the ambient data. Note
the low level of voltage (the proxy for pressure) fluctua-
tions in this region. This is consistent with the designa-
tion laminar, where no pressure fluctuations should
occur. In Fig. 15 we have the average mutual informa-
tion for this data set; zero lag is suppressed. We can
clearly see a minimum at T =7, or 77,~=107 usec. This
is similar to the first minimum for the ambient data set,
and indicates that the time delay here is characteristic of
something other than the fluid flow. Next examine the
false nearest neighbors for this data. In Fig. 16 we show
this for dimensions 1<d <20 using 87000 data points
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FIG. 14. Time series of voltage from the pressure transducer
located at station B1 in the laminar region during the rise of the
vehicle. Note the low voltage levels compared to the transition
and turbulent regions seen below. In noise free fluid flow there
should be no pressure fluctuations in the laminar region.

from the measurements. Once again we cannot say what
dimension should be used for unfolding an attractor for
this data, except that it is quite high. One might con-
clude that there is some evidence that an underlying
dynamical process of some low dimension, of order 7 or
so, has been seen here contaminated by substantial
amounts of noise from other sources. False nearest
neighbors is not a fine tuned enough tool to make that
kind of conclusion firm.

A similar set of results applies for the data from station
B3, which is also in the laminar region. Neither the time
series nor the power spectrum is very revealing. In Fig.
17 are the results for average mutual information for this
data station. There is again a clear minimum at 7' =7,
and that is the one we use in reconstructing the vectors in
multivariate phase space. In Fig. 18 is the result for false
nearest neighbors for this data. We reach the same con-
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FIG. 15. The average mutual information evaluated from
data taken at station B1 in the laminar zone during the rise of
the vehicle. The first minimum of I(T) is at T=7 or 107 usec.
327000 data points were used in this calculation.
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FIG. 16. Global false nearest neighbors for the data from sta-
tion B1 when the vehicle was in motion. The time delay of
T =7 used in constructing phase space vectors y(n) is taken
from the first minimum of the average mutual information. Re-
sults are shown for N =87 000 data points.

clusions just as before for the other laminar flow data.

In a sense this is surprising, and in another sense this is
natural. Of course, one expects laminar flow to be regu-
lar and low dimensional. Indeed, it is. From the point of
view of pressure fluctuations, perfectly clean data should
have dimension zero; that is, no pressure fluctuations in
laminar flow. However, we have data dominated by the
transducer response to fluid-loaded nose vibrations. The
indications of this are the levels of the fluctuations, and
even more telling is the place where average mutual in-
formation has its first minimum (namely T=5-—7)
characteristic of some time scale other than that of the
fluid flow. Finally, the false nearest-neighbor test shows
that each of the ambient and laminar data sets is very
high dimensional.
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FIG. 17. The average mutual information evaluated from
data taken at station B3 in the laminar zone during the rise of
the vehicle. The first minimum of I(7) is at T =7 or 107 usec.
327000 data points were used in this calculation.
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FIG. 18. Global false nearest neighbors for the data from sta-
tion B3 when the vehicle was in motion. The time delay of
T =17 used in constructing phase space vectors y(n) is taken
from the first minimum of the average mutual information. Re-
sults are shown for N =97 000 data points.

C. “Transition” region data

Now we come to much more interesting data. In the
transition region we should see some evidence of the pro-
duction of TS waves, and see some significant pressure
fluctuations. The data is now from station B4. In Fig. 19
we display the average mutual information which has its
first minimum at 7 =16 or about 244 usec, which is now
characteristic of the fluid flow according to our earlier es-
timates. In Fig. 20 we show the plot of false nearest
neighbors for this data for 1 <d <20. This is substantial-
ly different from the behavior of earlier data sets. Here
the percentage of false nearest neighbors drops to zero at
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FIG. 19. The average mutual information evaluated from
data taken at station B4 in the transition zone during the rise of
the vehicle. The first minimum of I(7) is at T =16 or 244 usec.
This is a time scale consistent with the fluid dynamics of the
boundary layer. 327000 data points were used in this calcula-
tion.
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FIG. 20. Global false nearest neighbors for the data from sta-
tion B4 when the vehicle was in motion. The time delay of
T =16 used in constructing phase space vectors y(n) is taken
from the first minimum of the average mutual information. Re-
sults are shown for N =97000 data points. The fall of false
nearest neighbors to zero at dimension 7 is a result of low di-
mensional dynamics as the source of the pressure fluctuations.

d =7 and then remains there. This behavior is charac-
teristic of a low dimensional chaotic system whose attrac-
tor has been unfolded at dimension 7.

Since this is so different from the previous data sets,
even though the time series and power spectra are not
that different, we take a look at another data set from the
transition region. The set we chose was from station CS5,
which is located very near the end of the transition re-
gion. In the power spectrum for this sensor the region
around 1500 Hz where TS waves were located before is
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FIG. 21. The average mutual information evaluated from
data taken at station CS in the transition zone during the rise of
the vehicle. The first minimum of 7(T) is at T =16 or 244 usec.
This is a time scale consistent with the fluid dynamics of the
boundary layer. 327000 data points were used in this calcula-
tion.
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FIG. 22. Global false nearest neighbors for the data from sta-
tion C5 when the vehicle was in motion. The time delay of
T =16 used in constructing phase space vectors y(n) is taken
from the first minimum of the average mutual information. Re-
sults are shown for N=57000 data points. The fall of false
nearest neighbors to zero at dimension seven is a result of low
dimensional dynamics as the source of the pressure fluctuations.

less distinct, but then we are further down the body than
at B4 so we have entered a region of more pronounced
nonlinear interaction among the modes. The average
mutual information for the C5 data set is shown for lags
12T <22 in Fig. 21 where the minimum, the first in
this data, is seen at T =16. This is the same as in the pre-
vious transition data set. In Fig. 22 the false nearest
neighbors for this data set is shown for 1 <d <12. The
false nearest neighbors has dropped below 0.5% at d =7
indicating that we almost certainly have unfolded the at-
tractor, though the cautious person would wish to choose
d =8. In a moment we will provide further evidence that
d =8 is appropriate. In any case, we see a clear state-
ment that the number of dimensions required to capture
this data set, as in the case of station B4, is small, namely
about 7 or 8. This is in sharp contrast to the laminar or
ambient data. Further underlining this as a dynamical
feature is the distinguishably higher level of pressure fluc-
tuations seen in the time series and the fluid dynamical
relevance of the time delay T =16 in units of 7.

1. Local false nearest neighbors

As another tool for examining the data here, we look at
a quantity which asks how many dynamical degrees of
freedom are excited locally on the attractor. The global
false nearest-neighbor criterion produces a global num-
ber, which allows the unfolding of the attractor in the
time delay coordinate system. However, since the time
delay coordinates are almost certainly not the original
coordinates in which the system evolves, it is quite plausi-
ble that the embedding dimension associated with the
global false nearest neighbors is larger than that of the
dynamics itself. To examine this we have created a local
false nearest-neighbor test [15], which examines in every

Local Dimension; d,

FIG. 23. Local false nearest neighbors for the data from sta-
tion CS5 in the transition zone. The time delay T =16 comes
from average mutual information. N =65000 data points were
used. B=0.54 measures the fraction of the attractor over which
a bad prediction must occur in the local false nearest neighbor
calculation. The percentage of bad predictions becomes in-
dependent of the number of neighbors Nz and the local dimen-
sion near d; =9. Np=10, 25, 50, and 75 were used here.

neighborhood on the attractor how well one can predict
ahead the evolution of two neighboring points in dimen-
sions less than or equal to the dimension given by the glo-
bal false nearest-neighbor test. If the percentage of bad
predictions that may be due to numerical accuracy or the
quality of the particular prediction method used becomes
independent of local dimension, then that dimension is
picked out as the dimension of the dynamics. The basic
idea is that when neighbors are false they are nearby for
geometric, not dynamical reasons, so they will lead to bad
predictions because they will evolve rapidly to far
separated parts of the attractor. True neighbors will
move along with each other and the quality of one’s abili-
ty to predict where they will go is not limited by their
having been projected together from a higher dimension
where they are in fact quite well separated. In Fig. 23 we
show the percentage of bad predictions for data set C5 as
a function of local dimension and of number of neigh-
bors. This shows that at d =8, which is the same dimen-
sion as the global false neighbor test indicated, the pre-
dictability becomes independent of these variables, thus
indicating that dimension 8 is correct for this set of ob-
servations.

D. Turbulent data sets

Now we examine data from two turbulent data sets.
The first is station B5, which is located at the beginning
of the turbulent region. In Fig. 24 the average mutual in-
formation is shown from 5 < 7T <22 and a clear minimum
at T =16 is revealed. T =16 is a time of 244 usec, which
is consistent with fluid flow dynamics. The amplitude of
the pressure fluctuations, compared to the ambient or
laminar data, supports this conclusion. In Fig. 25 we
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FIG. 24. The average mutual information evaluated from
data taken at station BS5 in the turbulent zone during the rise of
the vehicle. The first minimum of I(T) is at T =16 or 244 usec.
This is a time scale consistent with the fluid dynamics of the
boundary layer. 327000 data points were used in this calcula-
tion.

have the global false nearest-neighbors result for station
B5. 1t is clear that at dimension 9 or 10 we have unfold-
ed the attractor completely. We further examine this
conclusion by looking in Fig. 26 at the local false nearest
neighbors for data set BS. Here it is clear that at local di-
mension 9 we have achieved the independence of local di-
mension and number of neighbors, which is characteristic
of having unfolded the attractor locally.

Our next example is data from station B7 located in
fully developed turbulent flow. There are no surprises in
the time series or the Fourier power spectrum. Figure 27

100.0 @—
T .

90.0

80.0

70.0 J
60.0
50.0

40.0

Percentage of FNN

30.0 |

20.0 L)

- [ ]
00 b ®
1 2 3 4 5 6 7 8

10.0 |

-0 0-0-0-90-0-0-0-0-90- 00
9 10 11 12 13 14 15 16 17 18 19 20
Dimension

FIG. 25. Global false nearest neighbors for the data from sta-
tion B5 when the vehicle was in motion. The time delay of
T =16 used in constructing phase space vectors y(n) is taken
from the first minimum of the average mutual information. Re-
sults are shown for N =97000 data points. The fall of false
nearest neighbors to zero at dimension 9 is a result of low di-
mensional dynamics as the source of the pressure fluctuations.
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FIG. 26. Local false nearest neighbors for data from station
BS in the turbulent zone. The time delay T =16 comes from
average mutual information. N =75000 data points were used.
B=0.54 measures the fraction of the attractor over which a bad
prediction must occur in the local false nearest neighbor calcu-
lation. The percentage of bad predictions becomes independent
of the number of neighbors N and the local dimension near
d; =9. Ny=10, 25, 50, and 75 were used here.

shows the average mutual information from 10=< T =25,
and the minimum at 7 =18 (the first minimum) is evi-
dent. Using this value of the timelag we evaluate the glo-
bal false nearest neighbors which is shown in Fig. 28; a
global embedding dimension of d =8 is revealed for this
data. In Fig. 29 we display the local false nearest-
neighbor calculation for data set B7. This makes it quite
clear that at dimension 8 we have locally unfolded the at-
tractor and confirms the evidence from the global exam-
ination of this question.
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FIG. 27. The average mutual information evaluated from
data taken at station B7 in the turbulent zone during the rise of
the vehicle. The first minimum of I(T) is at T =18 or 275 usec.
This is a time scale consistent with the fluid dynamics of the
boundary layer. 327000 data points were used in this calcula-
tion.
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FIG. 28. Global false nearest neighbors for the data from sta-
tion B7 when the vehicle was in motion. The time delay of
T =18 used in constructing phase space vectors y(n) is taken
from the first minimum of the average mutual information. Re-
sults are shown for N =59500 data points. The fall of false
nearest neighbors to zero at dimension 8 is a result of low di-
mensional dynamics as the source of the pressure fluctuations.

The last look at data from pressure sensors comes from
examining data from station A4 8, which is within the fully
turbulent region. In Fig. 30 we show the average mutual
information from this sensor. This reveals a clear
minimum at T =20 corresponding to a timelag of 300.5 u
sec, which is associated with the fluid flow. Using this
value of T we determine the percentage of global false
nearest neighbors shown in Fig. 31. The percentage
drops very near zero by dimension 7, and we zoom in on
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FIG. 29. Local false nearest neighbors for data from station
B7 in the turbulent zone. The time delay T =18 comes from
average mutual information. N =75000 data points were used.
B=0.54 measured the fraction of the attractor over which a bad
prediction must occur in the local false nearest neighbor calcu-
lation. The percentage of bad predictions becomes independent
of the number of neighbors Ny and the local dimension near
d; =9. Ny=10, 25, 50 and 75 were used here.
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FIG. 30. The average mutual information evaluated from
data taken at station A48 in the turbulent zone during the rise of
the vehicle. The first minimum of I(T) is at T =20 or 305 usec.
This is a time scale consistent with the fluid dynamics of the
boundary layer. 327000 data points were used in this calcula-
tion.

this data in Fig. 32 where global false nearest neighbors is
shown for 6 <d <15 and we see the percentage of false
neighbors go to zero at d =9 and then stay there. The lo-
cal false nearest-neighbors test displayed in Fig. 33
confirms that at dimension 9 we have removed all ambi-
guities in true neighbors by unfolding the attractor.

E. Accelerometer data

We have one other glimpse of the dynamics in this ex-
periment, namely data from an accelerometer mounted
forward in the test vehicle. Using this data we display
the average mutual information in Fig. 34 for 3 < T <20;
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FIG. 31. Global false nearest neighbors for the data from sta-

tion A8 when the vehicle was in motion. The time delay of

T =20 used in constructing phase space vectors y(n) is taken
from the first minimum of the average mutual information. Re-
sults are shown for N =87000 data points. The fall of false
nearest neighbors to zero at dimension 7 is a result of low di-
mensional dynamics as the source of the pressure fluctuations.
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FIG. 32. Expanded scale for global false nearest neighbors
for the data from station 48 when the vehicle was in motion.
6=<d <15. The time delay of T'=20 used in constructing phase
space vectors y(n) is taken from the first minimum of the aver-
age mutual information. Results are shown for N =87 000 data
points.

we see the first minimum of the average mutual informa-
tion at T =35, which does not correspond to fluid dynami-
cal time scales. Finally, using this data we show in Fig.
35 the global false nearest neighbors, which demonstrates
that this is very high dimensional dynamics and
significantly different from the dynamics of the fluid flow
seen in the transitional and turbulent data sets. The ac-
celerometer data is consistent with the laminar data,
which represents the response of the transducer to nose
vibration.
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FIG. 33. Local false nearest neighbors for data from station
A8 in the turbulent zone. The time delay T'=20 comes from
average mutual information. N =65000 data points were used.
B=0.54 measured the fraction of the attractor over which a bad
prediction must occur in the local false nearest neighbor calcu-
lation. The percentage of bad predictions becomes independent
of the number of neighbors N and the local dimension near
d; =9. Ng=10, 25, 50, and 75 were used here.
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FIG. 34. The average mutual information evaluated from
data taken at the forward mounted accelerometer during vehicle
motion. The first minimum of I(T) is at T=5 or 76 usec.
262 000 data points were used in this calculation.

III. SUMMARY, CONCLUSIONS,
AND FUTURE DIRECTIONS

This paper has analyzed in some detail the pressure
fluctuations measured on an axisymmetric body propelled
under its own buoyancy at velocities on the order of 20
m/sec. At these velocities and with the momentum
thickness of the boundary layer about 0.5 cm, one estab-
lishes that the thickness Reynolds number is about
100000. In such flows there is substantial activity in the
form of coherent structure [1,2] whose size in ‘“‘wall
length” units is about 100 wall units spanwise in the
lower boundary layer and 150 to 200 units streamwise in
the upper boundary layer.

These coherent structures are known to contribute in a
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FIG. 35. Global false nearest neighbors for the data from the
forward mounted accelerometer when the vehicle was in
motion. The time delay of 7 =5 used in constructing phase
space vectors y(n) is taken from the first minimum of the aver-
age mutual information. Results are shown for N =87 000 data
points.
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significant way to the wall pressure fluctuations. The sen-
sors used in this experiment have an effective sensing di-
ameter of about 1400 in wall units. This is a very large
sensor relative to the “optimum’ sensor size identified by
Schewe [16], which is 19 wall units. The optimal size is
established on several bases among which is proper evalu-
ation of the whole set of degrees of freedom in the tur-
bulent flow as seen in spectral analyses. The sensors in
the present experiment certainly average over numerous
short wavelength excitations of the fluid and sense scales
which are consistent with those of the coherent struc-
tures. Indeed, on the basis of their size alone we would
expect that these sensors would be responding to about
ten or so coherent structures and report pressure fluctua-
tions associated with the dynamics and interaction of this
collection of coherent objects.

This qualitative picture is both consistent with and
provides a rationale for the interpretation of the observa-
tions we have made in this paper when nonlinear signal
processing methods [5] are applied to the data. These in-
clude:

(i) In the ambient data and in data taken from an ac-
celerometer placed in the prow of the buoyant body we
see that the mutual information ‘“decorrelation time” of
the pressure fluctuations is a factor of 2 to 3 less than the
times associated with fluid dynamical motions. The di-
mensions of the embedding space required to unfold the
attractor in the dynamics is very large and is consistent
with one’s usual picture of “noise.”

(ii) In the data from the laminar flow regime of the
boundary layer we also see time scales smaller than those
of the fluid flow and see an embedding dimension which
is very large. The laminar regime should have no pressure
fluctuations, of course, so it is important to see this result
as consistent with the general picture of the flow. The ac-
tual behavior of the global false nearest neighbors for
these data suggests that it may be that there is a low di-
mensional dynamics (the beginning of Tollmien-
Schlichting waves, perhaps), which is low amplitude in
this region and is dominated by the ambient or instru-
mental “noise” seen in the ambient and accelerometer
data. It is impossible with just the geometric tool of false
nearest neighbors to make a decision about this possibili-
ty.

(iii) In the data in the transition region we see mutual
information time scales that are consistent with the fluid
dynamical excitations, namely about 250 usec, and we see
low dimensional embedding dimensions chosen by the
data itself as needed for the unfolding of the system at-
tractor. The Fourier spectrum in this region is consistent
with a band Tollmien-Schlichting perhaps interacting
with each other but now at substantially larger amplitude
than might have been the case in the laminar region. The
embedding dimension required for the dynamics observed
through the pressure sensors is about 8 or so, varying
with the individual sensor.

(iv) In the data on turbulent flow in the boundary layer
we see much the same pattern as in the transition region.
The Fourier spectra have no distinguishable Tollmien-
Schlichting region, as expected, and the time scale for
mutual information decorrelation is slightly larger than
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in the transition region, though still clearly of fluid dy-
namic origin. The dimension required to unfold the at-
tractor is about 9 or 10 in this flow regime.

We did perform some computations on the Lyapunov
exponents for these data using methods well established
in the literature [5] but are not yet confident enough of
the numerical values to report them. The issue is the
ability to quantitatively do computations on Lyapunov
exponents in spaces of dimension 8 to 10 using the
amount of data available. The qualitative picture which
consistently emerges is that there is at least one positive
Lyapunov exponent as required by all descriptions of
chaotic behavior and one zero exponent demonstrating
that the dynamics is that of a flow, not an iterated map.
The sum of all exponents was always negative, so the flow
is dissipative. Finally, the order of magnitude of the larg-
est exponent was about (IO’TS)_I, with 7,=15.26 usec,
the sampling time for these data. More details on these
exponents will be reported in future work.

These analyses are remarkable in providing clear evi-
dence for low dimensional dynamics within a flow which
all agree is high dimensional when all degrees of freedom
are accounted for. The numerical experiments of Keefe,
Moin, and Kim [6] suggest that in flows of this sort with
lower-Reynolds numbers, a dimension (Lyapunov dimen-
sion) of 380 is seen. This rests on the full set of degrees of
freedom excited by the flow. The present experiment has
the good fortune to have utilized a sensor that averages
out many of these degrees of freedom at the smallest
scales and is sensitive to the dynamics and interaction of
larger scale coherent structures in the boundary layer
flow.

This raises the very interesting possibility for future ex-
periments in this area: measuring the embedding (or oth-
er) dimension as a function of sensor size (in wall units).
If the explanation suggested here is qualitatively correct,
we would expect that as the size of the sensor is increased
the embedding dimension will slowly increase as more
and more coherent structures are felt by the sensor. As
the sensor size is decreased, the embedding dimension
will decrease until the small scale motions become of im-
portance, and then the dimension will rise again. If this
holds true, for various applications of the observations
here we would suggest using the minimum of such a di-
mension versus sensor size curve for operating purposes.

Further, this result suggests that the idea of what di-
mension one will see in an extended or continuum system
with intrinsically many degrees of freedom (essentially
infinity in a fluid flow) depends on the resolution at which
one looks. The strict notion suggested by the embedding
theorem [3,4,12] that all degrees of freedom can be sensed
by a single sensor of whatever size cannot be true physi-
cally unless the requirements of an infinite amount of
infinitely accurate data is provided. There is a real chal-
lenge to the physical interpretation of experiments such
as these to establish how dimensions will vary as sensor
resolution is varied. The same question arises in the area
of analysis of climate and weather. Realistic resolution in
measurements appropriate for that area is typically quite
coarse. This means that the many, many degrees of free-
dom within the primitive equations for those flows are
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unlikely to be relevant to observations. The challenge of
how to establish what is the relevant number of degrees
of freedom as a function of resolution is what we pose
here. The numerically based answer given in this paper is
clearly only a bellwether stating that an interesting ques-
tion is being posed.

The results in this paper suggest several directions of
further inquiry:

(i) One should repeat the experiments both on the ax-
isymmetric buoyant body and on appropriate laboratory
flows. Instrumenting the body with pressure sensors of
varying sizes is certainly called for as well as choosing the
distribution of sensors to capture the spatial behavior of
the turbulent boundary layer flows. The opportunity of
using some flow visualization when possible could be very
useful contribution to our understanding of these flows
and measurement of the velocity and vorticity within the
boundary layer in the vicinity of the pressure sensors
could be quite interesting.

(i) Using numerical simulations both existing [6] and
higher resolution when possible would allow investigation
of the dimension versus sensor size (effective spatial reso-
lution) in these spatio-temporal chaotic settings. While no
substitute for the real experiment, numerical experiments
here have clear and well tested advantages.

(iii) One should clarify the evaluation of local and glo-
bal Lyapunov exponents [5] in the spaces of dimension 8
to 10 which one must deal with in these data. The pred-
ictability associated with both local and global exponents
is important to establish. Further connecting large local
exponents with properties of the coherent structures
would be of high physical interest.

(iv) One should develop filtering methods [5] based on
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models, either locally deterministic or probabilistic, for
removing the effect of the observed pressure fluctuations
as they serve to mask external signals of interest.

(v) Moving into the uncertain, we anticipate the use of
developments of existing “control” methods for chaotic
evolution [18] to allow control of the low dimensional dy-
namics seen in this experiment either to reduce the chaot-
ic behavior, if that is desired, or to enhance it under other
circumstances. The reduction would plausibly reduce
“drag,” while the enhancement might allow the use of
the chaos for steering or braking of objects moving rapid-
ly in a fluid.
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FIG. 1. The setup of the experiment on the
buoyant test vehicle. The vehicle was
launched at =300 m depth and rose freely to
about 50 m, where it turned to avoid breaching
the surface. Data were taken every 15.26 usec
for 5 sec while the vehicle was in free flight.



